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West Germany 
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Abstract. Non-dynamical conserved quantities are analysed for a class of field theories and 
their topological character is discussed. Some examples are given. 

1. Introduction 

Classical solutions of field theories have received much attention recently (Goldstone 
and Jackiw 1975, Dashen et al 1974, Faddeev 1975). The interest in these solutions 
derives from the fact that they exhibit extended particle structures (kinks, solitons). 
They also offer a new and potentially powerful approach to the bound state problem in 
quantum field theory. 

In many models a conserved quantity is obtained and this has the interesting 
property that its appearance is not due to any particular symmetry in the theory nor due 
to any particular form of dynamics. Rather its appearance depends on the manifold on 
which the field variables take their values and hence it is called a topological charge. 

In this paper we should like to study these charges in a systematic way for a class of 
field theories. Most of the results we present are known in one form or another in the 
literature (Faddeev 1975). Our presentation however does make clear the nature of 
these conserved charges. We use the methods of differential topology (Milnor 1965, 
Guillemin and Pollack 1974) which were so elegantly employed by Arafune et a1 (1975) 
in their analysis of the conserved magnetic charge discovered by t'Hooft (1974). The 
relationship of our analysis with that of various authors (Faddeev 1975, Finkelstein 
1966) who use homotopy groups is discussed. In 0 2 we give a detailed presentation of 
the conserved quantities and exhibit their topological character and in 0 3 we consider 
some examples. 

2. Topological charges 

2.1. Non-dynamical conservation laws 

We begin our analysis with the following simple theorem. 

Theorem. Let C$ = (d', . . . 4") be an n-dimensional smooth, unit vector field$ defined 

t Alexander von Humboldt Stiftung Fellow. 
$For a smTth unit vector field, all partial derivatives exist and are continuous and ( & f ) =  
( r $ ' ) * + .  . 1. 
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on a d -dimensional space-time. Then, if n C d, non-dynamical conserved quantities 
exist defined in terms of these fields. 

Proof. Since (6, &) = 1, (4, a,&) = 0. Thus if n s d, the d x n matrix [a&] must have a 
rank smaller than n, i.e.: 

A 

(2.2) *a1 ~ ~ , . . . ~ , , 4  . . . a,,4an~ = 0. a,l[E'L~. +w.+d  

The quantity in the square bracket in (2.2) is therefore conserved. It is clearly 
non-dynamical; rather it is geometric. 

The theorem tells us how we may construct conserved quantities for theories like the 
non-linear U model. In many other theories one has an n-dimensional vector field 4 
which is not of unit length. We may then consider the direction vector field & = 4/11411. 
However this is not smooth everywhere and expression (2.1) constructed from it need 
not vanish everywhere. In fact in this case is smooth except at the zeros of 4 
(assuming 4 is smooth) and we expect that the left-hand side of (2.1) shows 6-function 
singularities at the zeros of 4. For these theories however one would still have (if 
n + 1 S d ) :  

E ,  ,... a,a,t&al . . . a , d W  = 0. (2.3) awn +,[ E CL I...&. +d 

The quantity in the square bracket is then conserved. 
For further analysis we restrict ourselves to the following two cases: 

(A) n = d, 4 is smooth everywhere. 
(B) n + 1 = d, & = 4/11411, 4 is smooth everywhere. 

Most of the known models in which one meets topological charges fall into these two 
cases. 

Following (2.2), for case A, we define the conserved current by: 

and following (2.3), for case B, we define 

as the conserved current. In (2.4) and (2.5), a"-' corresponds to the surface area of a 
unit sphere in n-dimensional space. 

From our discussion following (2.2) we should notice that $2 is a smooth current 
distribution. On the other handy; is zero everywhere except at the zeros of c$(x). We 
also notice that in spite of being conserved, these currents do not generate any 
symmetry transformations since the charge density contains no time derivatives of the 
field variables and hence commutes with them. 

The charge in volume V of space in the two cases is given by: 
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and 

where $a = ((I,. . . , ["-') are the intrinsic coordinates on the sphere S2-I. 
gab = (a4/aga, a4/acb) is the metric on ~ 3 - l  and, in (2.7) ( y ' ,  . . . , y"-') are the intrinsic 
coordinates on the surface aV of V. 

2.2. Boundary conditions 
In order to evaluate thesf integrals for solutions of physical interest we should consider 
further conditions on +(x). We shall restrict ourselves to the following types of 
boundary conditions: 

Case A. For the convergence of the energy integral we require that 

C(x) + C v a c  as MI + 

where &,, is one particular vacuum solution. 
Case B. Here we require a somewhat different condition. In order to avoid infinite 

charge solutions we demand that the vacuum solution +vac # 0. This is always so for a 
theory with a spontaneously broken symmetry. For the energy to be finite this 
condition would mean that + can be zero only in a bounded region. We shall assume 
that 4 has a finite number of isolated zeros. 

2.3. Degree of a map 

Let us now introduced the topological concept of the degree of a map. This will enable 
us to solve the integrals for the charges. The degree of a map from a manifold M to 
another manifold N is effectively the number of times N is covered as one varies over M. 
The conditions that M and N must satisfy for the concept to be meaningful are specified 
in the following formal definition (Milnor 1965, Guillemin and Pollack 1974). 

Let M and N be two differentiable manifolds of dimension n, M being compact and 
N connected. Let f be a smooth mapping from M to N. Let My = {x E M :  f(x) = y ,  
y EN}, that is, the set of points of N which take the value y underf. Choose y to be the 
regular value off (i.e. the Jacobian Ilaf/axll is non-zero at all points in M y ) .  Then the sum 
of the sign of the Jacobian Ildf/axll at all the points of My is called the degree of the map f: 

This definition is independent of y (because of connectedness) and is globally defined 
since regular values of f are dense in f(M). Thus deg(f) is just a count, taking 
orientation into account, of the points which are mapped into a regular value. 

We evaluate the integral for the charges by the use of the degree theorem 
(Guillemin and Pollack 1974): 

Let (x') be the coordinates on M and (6')  the coordinates on N a n d  further, let N be 
also compact. Given a real valued function h on N, it defines a real valued function ho f 
on M and we have: 
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This formula is easy to understand. The integral of h over N is carried out deg(f) times 
as x varies over M. 

2.4. Evaluation of the charges 

We now use these concepts and the specified boundary conditions to evaluate the 
integrals (2.6) and (2.7). Notice that in both cases N = S$-' and 

(2.10) 

Consider first the integral (2.6). The charge a,", for arbitrary V, is some real 
number. To determine the total charge Q',"', we may use the boundary conditions to 
compactify W-' by some map 

c:w-'Y{oo}+ sn-'. 
Then it is easy to see that: 

Qzt = deg(f,c-'). 

The total charge is therefore an integer. 
Consider now the integral (2.7). Since we have assumed that 4 has a finite number 

of isolated zeros, we may take a V  to, be the surface of a sphere of some radius R so that 
#I has no zeros on aV. The map 4 restricted to aV is smooth and using the degree 
theorem we obtain: 

a: '=  deg(fIdv). 

Thus the charge in case B is always localized and an integer which is in sharp contrast to 
case A. 

It is an interesting question to ask how many values the total topological charge can 
take. In the cases that we have considered the charge equals the degree of a certain map 
and this can take any integer value. 

What does the charge characterize? Since it is of topological origin we expect that it 
is invariant under continuous deformations of the field d. This is indeed so. All maps 
from one topological space to another can be divided into the so-called homotopy 
classes; two maps belong to the same class if they can be continuously deformed into 
each other. For mappings of S" to S" (which is of interest to us) these classes are in one- 
to-one correspondence with the elements of the homotopy groups II,, (S")  (Finkelstein 
1966). For n = m the concept of degree is defined and a theorem due to Hopf states that 
two maps belong to the same homotopy class if and only if they have the same 
degree. The degree of 6 thus characterizes the homotopy class to which the field f 
belongs. 

2.5. Conserved tensor densities 

For cases besides A and B, we may define conserved tensor densities and it is interesting 
to ask how one may extract a topological charge from them. In the case n < d  and 4 
smooth, one has from (2.2) 

(2.11) 9 p ' n p n + l . . . P d  = E P  1.. 'P ,  ... pd € a l , . . a " ( a p l f = l )  * ( a p n - , f U n - l ) f U n  

which is conserved. 
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It is easily seen that charges constructed from this tensor density by integrating over 
various surfaces are constants of motion and surface independent. They can all be 
related as appropriate integrals of 

(2.12) 

. .  
' d  ' d  
x = x g  

which itself is conserved and surface independent (i.e. independent of to and xb, 
i = n + 1,  . . . , d ) .  This integral is clearly zero since it may be evaluated at a surface at 
infinity where the current density vanishes. Thus all charges defined as surface or 
volume integrals of the tensor current densities are identically zero and contain no 
topological information. One may be tempted to say that the topologcal charge must 
be zero. This however is incorrect since the topological charge, as we define it, must 
determine the homotopy class of the field and therefore must be an element of the 
appropriate homotopy group. There are examples where the above charges are zero 
but where the associated homotopy groups are not trivial. This happens, for example, in 
the O(3) symmetric non-linear (T model in four space-time dimensions or, as may 
be explicitly verified, for the map d = $oc where c is the stereographic projection: 
R3 U {CO} + S 3  and $ is the map: 

(sin $a cos p, sin $a sin p, cos za cos y, cos $a sin y )  1 

+ (sin a cos@ - y) ,  sin a sin(@ - y) ,  cos a )  

for which the topological invariant is called the Hopf invariant and equals one but for 
which the charge 0 in (2.12) is zero. We expect that these conserved current densities 
should contain topological information but how one may determine the topological 
charge from them is at present not clear. 

3. Examples 

In this section we consider various models which fall into cases A or B. 

3.1. Case A 

3.1.1. Sine-Gordon equation. 

Ocp +sin cp = 0, d =2.  (3.1) 
Since the equations of motion are invariant under cp + cp + 2.rr we can embed the theory 
in a non-linear U model by defining: 

d2 = sin q. (3.2) 
A 1  

q5 =coscp, 

We are interested in smooth solutions for cp and therefore 4' and d* are also smooth 
everywhere. 

The topological current is defined to be: 
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and we notice that it is smooth and therefore a continuous distribution. The charge in 
this case is easily evaluated and, in (he range [a, 61, is: 

1 
Q [ a , b l = - [ ~ ( b ) - q ( a ) ]  

27r 

which is, in general, not an integer. The total charge is given by: 

1 
Q ‘ ” ‘ = G [ ’ P ( ~ )  -cp(-a)l. (3.4) 

The boundary condition in this case is (P + a vacuum solution as x + fa and since the 
vacuum solutions differ by 27rn ( n  integer), it follows that: 

Q‘”’ = n. 

The same result would of course be obtained by considerations of § 1.  

3.1.2. Non-linear U models. 

Up +&(a,&, 84) = 0, t&, C l =  1.  (3.5) 
For the case n = d = 3 an infinite number of kink solutions were presented by Honer- 
kamp eta1 (1976). For this case & is smooth everywhere and the topological current is 
given by: 

Eabc4aav$bau&c .  (3.6) 
$I” = GcI”vw 

1 

For n = d = 4 we have the non-linear chiral Lagrangian for pions. The topological 
charge is defined from the currentt: 

cabcd& a a,& a,& a,& ‘. 1 I” - LI”vuP 

-3!47r2 (3.7) 

The currents (3.6) and (3.7) are continuous distributions and the total charge is an 
integer if the prescribed boundary conditions are used. 

3.2. Case B 
3.2.1. Self-coupled scalar fields. A neutral, self-coupled scalar field ( n  + 1 = d = 2 , #  
smooth) : 

av 
U#+--0. 

a# 
We define: & (x) = # (x)/l# (x)] whenever # (x) # 0. The topological current in this case 
is : 

81” = cpvay& (3.8) 

and if x’, . . . , X“ are the zeros of #(x) then the current density is: 

(3.9) 

t For a kink solution in a model belonging to this class, see Skyrme (1961). 
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where dd(x ’ )  = +l, 0 depending on the behaviour of + ( x )  near x ’ t .  It is clear that the 
charge is localized and is always an integer and, from continuity of + ( x ) ,  if follows that 
the total charge is *1 or 0. 

3.2.2. t’tiooff’s monopole (Arafune et a1 1975, t’Hooft 1974). Here the magnetic 
current density is ( n  + 1 = d = 4): 

(3.10) 

which differs by a factor of 47r/e from the topological current (2.5). Magnetic charge is 
therefore localized and always quantized in the units of 47r/e. 

4. Conclusion 

We have shown how conserved quantities of topological character can appear in field 
theory. In our analysis they arise because of constraints on the field variables. Such 
constraints are, of course, already present in theories containing unit vector fields. For 
other theories one may either consider vector fields or suitably embed the theory in 
higher dimensions as we did for the Sine-Gordon equation. We have considered two 
classes of models in detail (cases A and B in the text). In case A the topological current 
is a continuous distribution and the charge in any volume is generally an arbitrary real 
number. With the prescribed boundary condition the total charge is shown to be an 
integer specifying the homotopy class of the field variable. In case B, with suitable 
boundary condition the charge is always localized and always an integer. 

Most of the known models where topological charges have been explicitly displayed 
belong to class A or B that we have considered. There are however models where one 
has conserved topological tensor currents and for which one expects non-trivial 
topological invariants. So far it remains unclear how these invariants may be extracted 
from the currents. 

Acknowledgments 

The authors would like to thank Professor J Honerkamp for discussions. One of the 
authors (A Patani) would like to thank the Alexander von Humboldt Stiftiing for 
support. 

References 

Arafune J, Freund P G 0 and Goebel C J 1975 J. Mafh. Phys. 16 433 
Christ N H and Lee T D 1975 Phys. Rev. D 12 1606 
Dashen R, Hasslacher B and Neveu A 1974 Phys. Rev. D 10 41 14,4130 
Faddeev L D 1975 Insfitute of Advanced Sfudy Preprint 
Finkelstein D 1966 J. Math. Phys. 7 1218 
Goldstone J and Jackiw J 1975 Phys. Rev. D 11 1486 

t For the well known static kink solution in Cp4 theory and the two-soliton solution of Christ and Lee (1975): 

$ ( x ) = O ( x )  dd(O)=l. 



1520 A Patani, MSchlindwein and QShafi 

Guillemin V and Pollack A 1974 Differential Topology (Englewood Cliffs, NJ: Prentice-Hall) 
Honerkamp J, Patani A, Schlindwein M and Shafi Q 1976 Lett. Nuouo Cim. 15 97 
t’Hooft G 1974 Nucl. Phys. B 79 276 
Milnor J 1965 Topology from the Differenrial Vieapoint (Virginia: University of Virginia Press) 
S k y ”  T H R 1961 Roc.  R .  Soc. A 260 127 


